

## DOO-003-026203

Seat No.

## M. Phil. (Science) (Sem. II) (CBCS) Examination

May / June - 2015

Maths: EMT-20011: Complex Analysis

Faculty Code: 003 Subject Code: 026203

Time :  $2\frac{1}{2}$  Hours] [Total Marks : 70

**Instruction:** (1) Answer All Questions.

(2) Each Question Carries 14 Marks.,

- 1 Answer any seven questions. Choose the correct answer.  $2 \times 7 = 14$ 
  - (1) If  $z_1, z_2, ..., z_n$  are the only zeros of an entire function f repeated according to the multiplicity then the rank of f is \_\_\_\_\_
    - (A) n

(B)  $\infty$ 

(C) 0

- (D) 1
- (2) If f is an entire function of rank 2 and

$$f(z) = z e^{4z^2 + 2z^2 + 3z} \prod_{n=1}^{\infty} E_2\left(\frac{z}{n}\right)$$

then the genus of f is \_\_\_\_\_

(A) 2

(B) 3

(C) 4

- (D) 1
- (3) If f is analytic and injective on  $ot\subset$  then f is \_\_\_\_\_
  - (A) a none-constant polynomial
  - (B) a rational function
  - (C) a transcendental entire function
  - (D) f(z) = az + b,  $\forall z \notin \mathbb{Z}$  for some  $a, b \notin \mathbb{Z}$  and  $a \neq 0$

- (4) \_\_\_\_\_ has infinitely many fixed points
  - (A) every transcendental entire function
  - (B) every entire function of finite non-integral order
  - (C) every entire function of finite order
  - (D) every non-constant polynomial
- (5) \_\_\_\_\_ is locally path connected.
  - (A) every connected space
  - (B) every locally compact space
  - (C) every Riemann surface
  - (D) every path connected space.
- (6)  $M(r,\cos z) = \underline{\hspace{1cm}}, \forall r \ge 0$ 
  - (A)  $\cos r$

(B)  $\cos hr$ 

(C)  $\sin r$ 

- (D)  $\sin hr$
- $(7) \quad \int_{0}^{\pi} \log \sin t \ dt = \underline{\qquad}$ 
  - (A)  $\pi \log 2$

(B)  $-\pi \log 2$ 

(C) 0

- (D)  $\frac{\pi}{\log 2}$
- (8) If  $f(z) = z^2 + 2z + 3$  then f(B(0,3)) contains a disc of radius \_\_\_\_\_
  - (A)  $\frac{1}{72}$

(B)  $\frac{1}{12}$ 

(C)  $\frac{1}{36}$ 

(D)  $\frac{1}{24}$ 

- (9) \_\_\_\_\_ is a true statement.

  - (B) an entire function of finite genus  $\mu$  is an entire function of finite order  $\leq \mu$
  - (C) Weinstrass factorization of an entire function is unique
  - (D) order of  $z^3 e^{z^2}$  is 3
- (10) \_\_\_\_\_ is not a true statement
  - (A) every entire function of finite order  $\lambda$  is an entire function of finite genus  $\leq \lambda$
  - (B) an entire injective function is a polynomial of degree 1
  - (C) ∞ is an essential singularity of every entire function
  - (D)  $(\emptyset, \exp)$  is a covering space of  $\emptyset$
- 2 Answer any two questions.

14

- (a) State and prove Poisson-Jensen's formula.
- (b) Define the order of an entire function. Give an example of an entire function of order 1 with proof.
- (c) Let f be an entire function, f(0) = 0 and n(r) be the number of zeros in B(0, r) counting the multiplicity. Give an estimation for n(r) and prove your answer.
- 3 (a) State, without proof, Hadamord's factorization theorem. 7
  State and prove the special case of Picard's theorem.
  - (b) If f is a transcendental entire function and p is a polynomial

then prove that  $\lim_{r\to\infty} \frac{M(r, p)}{M(r, f)} = 0$ .

OR

- (c) If g is a polynomial of degree  $n \ge 1$  then prove that order  $\left(e^{g(z)}\right) = n$ .
- (d) State and prove the formula to find the order of an entire 7 function.
- 4 Answer any two.

 $2 \times 7 = 14$ 

7

- (a) If  $D = \{z \in \mathcal{Z} \mid |z| < 1\}$ ,  $f = D \to \mathcal{Z}$  is analytic, f(0) = 0,  $f^{1}(0) = 1 \text{ and } |f(z)| \le M, \forall z \in D \text{ then prove that}$   $f(D) \supset B\left(0, \frac{1}{6M}\right)$
- (b) Define Landau's constant L. If R > 0 and f is analytic in a region containing  $\overline{B}(0,R)$  then prove that f(B(0,R)) contains a disc of radius  $R |f^1(0)| L$
- (c) State and prove Little Picard's theorem.
- 5 Answer any two:

14

- (a) Prove that  $\not\subset_{\infty}$  is a Riemann surface.
- (b) Define analytic function between two Riemann surface. Prove that every polynomial "P" is in analytic function  $P: \not\subset_{\infty} \to \not\subset_{\infty}$ .
- (c) Define isomorphism between two Riemann surfaces x, y. If  $f: x \to y$  is an isomorphism of Riemann surface then prove that  $f^{-1}: y \to x$  is also an isomorphism of Riemann surfaces.
- (d) Define branch point of a non-constant analytic function  $P: x \to y$  between two Riemann surfaces x, y. State and prove the condition under which  $P: x \to y$  is unbranched.